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Asymptotic Probabilities in a

Critical Age-Dependent Branching Process

by Howard J. Weiner

ABSTRACT

Let Z(t) denote the number of cells alive at time t in a critical

Bellman-Harris age-dependent branching process, that is, where the mean

number of offspring per parent is one. A comparison method is used to show for

k >  I , and a high-order moment condition on 0(t), where G(t) is the cell lifetime

distribution, that Urn t
2
P[Z(t).zk] ak > 0, where are constants.

t ~~~~~~~~

The method is also applied to the total progeny in the critical

process.
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Asymptotic Probabilities In a

Critical Age-Dependent Branching Process

by Howard J. Weiner

1. Introduction.

Let Z(t) denote the number of cells alive at time ~ in a critical

Bellman-Harris [2] age-dependent branching process. That is, at time

t = 0, the process starts with one new cell with lifetime distribution

G(t), G(0+) 0, non-lattice, and

(1.1) G’(t) =

the density exists, and for some 6 > 0,

(1.2) $ t~~
6
g(t)dt < ~~~.

At the end of its life, the cell disappears and is immediately replaced by

k new cells with probability pk > 
0, with

(l.a)
k=O

and criticality ,

(1.4) E kpk I.
k= 1

Each new cell proceeds identically as the parent cell and independently

of all other cells and the state of the system. Assume that for all integers k,

(1.5) E 
k

n 1

It is the purpose of this note to show that for k >  1,

(1.6) h a  t 2P (Z ( t ) — k J ’. Sk > 0.
t •

where are constants.
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The method is also app lied to total progeny in the critical

process.

2. Integral Equation and Result.

Def ine the offspring generating function, for 0 
~ ~ ~ 

1,

(2.1) h(s) ~ E pk
a
k
.

k-0

Define the generating function for 1(t) as , for 0 < s < l, all C.> 0,

(2.2) F(s,t) ~

Then (2] F(a,t) satisfies

(2.3) F(s,t) — 1 - 0(t) + h(P(a ,t—u))dG(u) ,
‘0

with F(s ,0) a.

Theorem. Let Z(t) denote the nuither of cells at time t in a critical

Bellman-Harris branching process satisfying (1.1) - (1.5). Assume also

that the derivatives of h satisfy

(2.4) 0 < h”(l) < ., 0 < h” (1) -< ..

Then for k ) 1

(2.5) him t2P(Z(t)”kJ — a~~> 0
t - •

where fa~g) are constants.

Proof. Consider first the case k — 1, and writ, for simplicity
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(2 .6)  p (t) P[Z(t)=l].

From the representation (2.3), derivatives of F(s,t) with respect to

s exist , and note that

(2.7) ~F(:~t)j p(t).

From (2.7), (2.3) one obtains the relationship

(2.8) P(t) I - G(t) + fh’(l-Q(t-u))P(t-u)dG(u)

and P(0) = I ,

where

(2.9) Q(t)  — P [Z(t)  > 01.

From [2] ,

(2.10) u r n  tQ(t)  — 2p (h”(1))
4

t -~~

where

I..

(2.11) tdG(t).
‘0

Assume for simplicity in all the following that

(2.12) a
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The proof will proceed by a number of claims.

Ciaim t. Let R(t) be continuous , R(0) = 0, and satisfy , for t > 0,

that

t

( 2 . 1 3 )  R ( t )  > $ h’(l-Q(t-u))R(t-u)dG(u).
(<) 0

Then for a l l t > 0 ,

(2.14) R(t) > 0.

(<)

Proof. Assume the upper inequality of (2.13).

Note first that for all t > 0,

(2.15) R(t) ,& 0.

This follows from (2.13) by assuming there is a t0 such that R( t0) — 0,

and a contradiction is clear.

If the upper inequality in (2.13) is false, (2.15) requires that

R(t) < 0 for t > 0. Then on an arbitrary interval [O ,t], assume that R(t)

assumes its minitmim at t1 < t. Since 0 < h’(z) < 1, setting C — t
1 

in the

upper inequality (2.13) yields a contradiction. The lover inequality of

(2.13) implies the lower inequality of (2.14) similarly, completing the claim.

Claim !!. For some 0 <c <  1, all t> 0, def ine

(1 , t < i
(2 .16) K(t) — 

~ 1
I 2—c

C.

( 1 t < l
(2.17) L(t) — ç 

~( ,
t2+$ 

—
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Then for all t sufficiently large,

t
(2.18) K(t) > ~ — 0( t )  + $ h’(l—Q(t—u))K(t—u)dC(u)

0

and

r.t
(2.19) L(t) < 1 — 0(t) +J h’(l—Q(t—u))L(t-u)dG(u).

0

Proof. To show (2.18), note that the right side yields the inequality

t
(2.20) $ h’(l-Q(t-u))K(t-u)dG(u) < 0(t) - G( t /2)

0

rt/2
+ J h’(l—Q(t—u))K(t-u)dG(u).

0

A Tay lor expansion of the rhs of (2.20) yields,

~.t /2
(2.21) J h’(l—Q(t-u))K(t—u)dG(u)

a
t/2

— (l—Q(t—u)h”(l) + o(Q(t-u)))K(t-u)dG(u) .
• 0

A Newton binomial expansion applied to the rhs integrand of (2.21)

using (2.10), Theorem 4, p. 406 of [3], (2.16), and that ~ ~ 1 yields that

the rha of (2.21) equals
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(2.22) $

t/2 
- + o(~E~

L)) dG(u)

0 
- -u (t-u)~~~

1 rt/2 dC(u) 2 1

~ 
(1- 

- + o(—~--—)

t/2 2 1 
____ ____= —f-— $ (1 + ~ 

-c)u + o(1))dG(u) 
- 

2 + o( )
t 0 t

_c

+ (2-c’ _ _ _

~~~~~~~~~ 
~ 3—~ ~3-~

<
t2-5

for all t sufficiently large. In view of (2.20), (1.1), this suf f ices

for (2.18), and (2.19) follows similarly.

Claim III. For 0 < e < 1, and all t sufficiently large,

(2.23) 
~
2
’
I.c < P(t)

Proof. This follows from Claims I and II, where R — K - P, for example.

Claim IV. tat R(t) satisfy

(2.24) R(t) — I. - 0(t) ÷$h’ (l_Q(t_u))R(t-u)dG0
(u),

with R(0) — 1, where Q(t) is the probability of non-extinction for the process

with lifetime 0(t), and

(2.23) 1 — 0
0

(t) — e t.
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Then as t -.

(2.26) R( t )

for some constant c> 0.

proof. Write (2.24) as

(2.27) R(t) = 1 - G(t)  + e
_t 

$ h ~ (l_Q(U))R(U)e
U
dU

Different ia t ing,  with respect to t ,

(2.28) R’(t) = —g(t) + (l—C (t)—R(t)) + h’(l—Q(t))R(t).

Then , expanding h in a Taylor series , one obtains

(2.29) R ’( t) R( t) f ( t)

where

h” (*) 2 2
(2.30) f(t) — I - 0(t) - g(t) + 2 ~ (t)R(t) + (Q(t) - htl(I)t (t)

with 1 — Q(t) < * < 1. In view of (1.1), (1.2), (1.5), it follows from

Theorem 4 of [3 1 , p. 406, that

(2.31) (Q(t) — 
h”(i)t~ 

—
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An analysis similar to that in Claims I - III yields that for

0 < c < 1, for t sufficiently large,

(2.32) < R(t) <

Then (1.1), (2.11), (2.32) used in (2.30) imply that

(2.33) t2f( t)

is thtegrable with respect to Lebesgue measure on the positive line.

To solve (2.29) for t large, let

(2.34) Q(t) t2R(t).

Then (2.29) becomes

(2.35) Q ’( t) — t
2
f(t).

For fixed t
o > 

0, one then obtains

t
2

(2.36) Q(t) - Q(t0) — $ ~ f(~)d~to

or

(2.37) R(t)

for t sufficiently large, and c> 0, completing this claim.
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Claim V. Let

(2.38) T(t) I — G(t) + J h’(l—Q (t—u))R(t--u)dC(u).
0

Then, as t -.

(2.39) t2~T(t)-R(t)~ 
—. 0.

Proof.

t/2
(2.40) IT(t)-R(t)L < 

~J’ h’(l-Q(t-u))R(t-u)(dG(u)-dG0(u)~

+ 0(t) — G(t/2) + G
0
(t) — G0(t/2).

A Tay lor series and Newton binomial expansion on the right side integrand

of (2.40) yields

~
t/2T. 2 

_____  
1 ~~~~~

(2.41) J l—Q( t—u)h ” ( l )  + Q ( t—u)h ” ’ (k ( t_u ) ) ] :  ~ 2 + o( 2~ j  dG(u)—dG (u)~L (t-u) (t-u) ‘

where

(2.42) 1 - Q(t-u) < k(t-u) < 1,

and expression (2.41) equals
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•t/2r 2 1 c 1 ~“(2.43) - r— + o(r_)] [ 2 + 2)] (dC(u)_d00
(u))

0 (t-u) (t-u)

= $
t/2

[ - ~~(l + ~ ) + o(.~)] [2~ + o(-~)] (dG(u)-dG (u))

-4
= o(t ),

for t sufficiently large, using that

p. $~udc(u) = $~ udG (u) a 1.

This completes Claim V.

The proof of the theorem for P(t) may now be completed.

Define the iterative scheme, for n> 0

(2.44) P
(~~1) (t) = l - G(t)  + $ h ’ l-Q t-U P (fl ) t-u d G U ,

and let

(2.45) P (0) ( t)  R ( t ) .

Then from (2.38),  it follows that

(2.46) P(1) (t) — T( t ) .

Claims IV and V imply that, for t large,

(2 .47)  P (0) ( t )  ~-.j  and P (1)(t) ....j



11

An indu ct ion  argument along the lines of Claim V establishes that ,

for large t ,

(2.48) P (~ ) ( t)  ~~~~~

Note that for n >  0 ,

(2 .49)  P( t) - P
(~~1)

(t) = 1
t

h 1( l~Q(t ~ u) ) (P t~ u~~p (fl) t u d G ( u ) .

Denote

(2.50) ~~ (t) P(t) - P~~~(t),

then from (2.49),

(2.51) I~~÷1
(t)
~ < $ t ~~~(

t_u)
~dG u  < ~t~~l~G ( t)

where * denotes convolution , and c~(t) is the 
~th convolution of C with

itse l f .

Let (X i) denote I .I .D .  random variables , with distribution function G(t).

Set

U

(2.52) S~ ~ E x~.i—i

Then

(2 .53 )  0 (t) 
~ 

P[Sn < C] — P[S~-n< t-n],
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and if one takes n> t , by (1.2) and Chebyshev ’s inequality,

Var S
(2.54) G~(t) .~~~ 

= 
2

(n-t) (n—t)

Also ,

t/2
(2.55) 

~~o
1 * 0 (t) < G(t) - G(t/2) + $

~ 
lP(t-u)—R (t-u)IdC~

(u)

and (1.2), Claims III, Iv , and (2.54) yields that

(2.56) II
~Ø I * G~(t) ~ 2—c 2

t (n-t)

where K is a constant.

For fixed large C , let

(2.57) n> [t~~~].

This suffices for the proof of the theorem for P(t) P[Z(t) a

For k >  2, note that

(2.58) k~P[Z(t)=kJ ~ 
k P k(t) — ~

kF(a ,t)

s 0

Then (2.58) applied to (2.3) for k — 2 yields

t C
(2.59) P2(t) 

.
~ $ hts(1_Q(t_u))P2(t_u)dG(u) +$ h’(l—Q (t—u))P2(t—u)dG(u).0 0
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Since the theorem is true for P(t), then as (2.59) is of the same

form as (2.8), a similar analysis as that used to establish the result for

P(t) also establishes it for P2 ( t ) .  Assume the result true for Pk
(t ) ,  k< n.

App lying (2.58) to (2.3) for k = nfl yields an equation of the form

(2.60) P~~1
(t) a f~~1(t) +$h’(l_Q(t_u))P~~1(t-u)dG(u)

where the induction hypothesis yields that

(2.61) f(t )  =

In view of (2.61), equation (2.60) is of the same form as (2.8), and

the analysis for P(t) applies to P
~+i
(t), yielding the theorem.

Remark. This result is known for the critical diacrete..time or

Calton-Watson process. See [2] Ch. 1, for example. It may be possible

that a series of comparison sequences of the type given in (2.64) , (2.45)

relating the critical Bellman-Harris process with a corresponding critical

Galton-Watson process could yield this result.

3. Total Progeny.

For another application of the method, let

(3.1) N(t) — total nuzther of progeny born by t in a critical age-

dependent branching process with ~~> h’(l) • 
~~~~~ 

kpk > 0.

Denote, for 0 <s < l , t > 0

(3.2) H(s,t) ~ ~(1~~
t)
) — E 1 P(N(t)_k]s

k.

Is
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Then (e.g. [4], p. 394)

r t 1
(3.3) H(s,t) = sIll - G(t) ÷ I h(H(s,t_u))dG(u)~1.

L J

Since, for k> I,

(3.4) = k!P[N(t)=k) 
~ 

k !Q~(t)
s 0

one may apply (3.4) to (3. 3) to obtain the limiting values of

P(N(t)=kl 
~ 
Qk(t)

For k = 1, 2 one obtains, since l1(O,t) ~ 0, that

C

(3.5) Q1(t) 1 - G(t) + h(O)dG(u) -. p0 
as C -

0

t / 2  C
(3.6) Q2

(t) = 5  + 5  h ’(0)Q 1(t-u)dG(u) p0p1 as t
0 t/2

Similarly, by induction and an application of Leibniz’ lemea for successive

differentiation, the limiting values of the (Qk(t)J may be obtained. Thi.

result 1. implied by a representation essentially as that in (1], pp. 275-276.

No assumptions on higher moments of 0 are required, but all moments of

h(s) are needed in this approach.

•1~
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